\qquad
\qquad
Constructing a 60° Angle
We know that the angles in an equilateral triangle are all 60° in size. This suggests that to construct a 60° angle we need to construct an equilateral triangle as described below.

Step 1: Draw the arm $P Q$.
Step 2: Place the point of the compass at P and draw an arc that passes through Q.
Step 3: Place the point of the compass at Q and draw an arc that passes through P. Let this arc cut the arc drawn in Step 2 at R.
Step 4: Join P to R. The angle $Q P R$ is 60°, as the $\triangle P Q R$ is an equilateral triangle.

Constructing a 30° Angle
We know that:
$\frac{1}{2}$ of $60^{\circ}=30^{\circ}$
So, to construct an angle of 30°, first construct a 60° angle and then bisect it. Often, we apply the following steps.

Step 1: Draw the arm $P Q$.
Step 2: Place the point of the compass at P and draw an arc that passes through Q.
Step 3: Place the point of the compass at Q and draw an arc that cuts the arc drawn in Step 2 at R.
Step 4: With the point of the compass still at Q, draw an arc near T as shown.
Step 5: With the point of the compass at R, draw an arc to cut the arc drawn in Step 4 at T.
Step 6: Join T to P. The angle $Q P T$ is 30°.

Constructing a 120° Angle

We know that:
$60^{\circ}+120^{\circ}=180^{\circ}$
This means that 120° is the supplement of 60°. Therefore, to construct a 120° angle, construct a 60° angle and then extend one of its arms as shown below.

Constructing a 90° Angle

We can construct a 90° angle either by bisecting a straight angle or using the following steps.
Step 1: Draw the arm $P A$.
Step 2: Place the point of the compass at P and draw an arc that cuts the arm at Q.
Step 3: Place the point of the compass at Q and draw an arc of radius $P Q$ that cuts the arc drawn in Step 2 at R.
Step 4: With the point of the compass at R, draw an arc of radius $P Q$ to cut the arc drawn in Step 2 at S.
Step 5: With the point of the compass still at R, draw another arc of radius $P Q$ near T as shown.
Step 6: With the point of the compass at S, draw an arc of radius $P Q$ to cut the arc drawn in step 5 at T.
Step 7: Join T to P. The angle $A P T$ is 90°.

Example 1

a. Use a ruler and compass only to construct a triangle $A B C$ with $A B=5 \mathrm{~cm}, \angle B A C=60^{\circ}$ and $A C=4.5 \mathrm{~cm}$.
b. Measure the size of $\angle A B C$ and the size of $\angle A C B$. Hence, calculate the angle sum of triangle $A B C$.
c. Measure $B C$ to the nearest millimetre. Hence, find the perimeter of triangle $A B C$ in millimetres.

Solution:

a. Step 1: Draw a line, $A B, 5 \mathrm{~cm}$ long.

Step 2: Use the compass to construct a 60° angle at A
Step 3: Use the ruler to find C such that $A C$ is 4.5 cm long.
Step 4: Join B to C.
The $\triangle A B C$ is the required triangle.

b. Using a protractor, we find that:

$$
\begin{aligned}
& \angle A B C=55^{\circ} \\
& \angle A C B=65^{\circ}
\end{aligned}
$$

Angle sum of the triangle $A B C=60^{\circ}+55^{\circ}+65^{\circ}$

$$
=180^{\circ}
$$

c. Using the ruler, we find that:

$$
B C=48 \mathrm{~mm}
$$

$$
\begin{aligned}
\text { Perimeter } & =A B+B C+C A \\
& =5 \mathrm{~m}+48 \mathrm{~mm}+4.5 \mathrm{~cm} \\
& =50 \mathrm{~mm}+48 \mathrm{~mm}+45 \mathrm{~mm} \\
& =143 \mathrm{~mm}
\end{aligned}
$$

Activities

1. Construct the following angles using a ruler and compass
a. 30°
b. 45°
c. 135°
d. 225°
e. 120°
f. 150°
g. 210°
h. 245°
2. Use a ruler and compass to construct the triangle $P Q R$ with $P Q=8 \mathrm{~cm}, P R=7.5 \mathrm{~cm}$ and $\angle Q P R=60^{\circ}$
3. Use a ruler and compass to construct a square $A B C D$ of side 6 cm

4a. Use a ruler and compass to construct a triangle $P Q R$ with $P Q=7 \mathrm{~cm}, \angle Q P R=30^{\circ}$ and $\angle P Q R=60^{\circ}$.
b. Calculate the size of $\angle P R Q$ and check your answer with a protractor
c. Measure $P R$ and $Q R$ to the nearest millimetre. Hence find the perimeter of triangle $P Q R$ in millimetres

5a. Use a ruler and compass to construct a triangle $A B C$ with $A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=90^{\circ}$
b. Measure the size of $\angle B A C$ and hence calculate the size of $\angle A C B$.
c. Measure $A C$ to the nearest millimetre. Hence find the perimeter of triangle $A B C$ in millimetres.

6a. Use a ruler and compass to construct a trapezium $P Q R S$ with $P Q=8 \mathrm{~cm}, P S=7 \mathrm{~cm}, Q R=7 \mathrm{~cm}$, $\angle Q P S=60^{\circ}$ and $\angle P Q R=60^{\circ}$
b. Measure $R S$ to the nearest millimetre. Hence find the perimeter of the trapezium $P Q R S$

7a. Use a ruler and compass to construct a triangle $P Q R$ with $P Q=6 \mathrm{~cm}, \angle Q P R=30^{\circ}$ and $\angle P Q R=120^{\circ}$.
b. Calculate the size of $\angle P R Q$ and check your answer with a protractor.
c. Measure $P R$ and $Q R$ to the nearest millimetre. Hence find the perimeter of triangle $P Q R$ in millimetres

8a. Use a ruler and compass to construct a trapezium $D E F G$ with $D E=6.5 \mathrm{~cm}, \angle D E F=90^{\circ}$, $E F=5.5 \mathrm{~cm}, \angle E F G=90^{\circ}$ and $\angle E D G=60^{\circ}$.
b. Calculate the size of $\angle D G F$ and check your answer with a protractor
c. Calculate the sum of the interior angles of the trapezium
d. Measure $D G$ and $F G$ to the nearest millimetre. Hence find the perimeter of trapezium $D E F G$ in millimetres
http://www.mathsteacher.com.au/year8/ch10 geomcons/05 angles/const.htm

