Constructions Using Patty Paper

Complete the following definitions:

If two lines are perpendicular, then any two adjacent angles formed are \qquad .

If a line segment is bisected, then the two segments formed are \qquad .

If an angle is bisected, then the two adjacent angles formed are \qquad .

Construct a line perpendicular to a given line

Step 1: Draw a line on your patty paper. Label the line m.
Step 2: Fold your patty paper so that the two parts of line m lie exactly on top of each other. Crease the patty paper on the fold.

Step 3: Open the patty paper and draw a line on the crease. Label this line n.
Step 4: What is the relationship of line n to line m ? Describe how you could use the corner of your patty paper to justify this relationship.

Construct a line through a given point perpendicular to a given line

Step 1: Draw a line on your patty paper. Label the line m. Draw a point on the patty paper that is not on line m and label this point P.

Step 2: Fold your patty paper so that the two parts of line m lie exactly on top of each other. Slide the patty paper so that point P will be on the fold. Crease the patty paper on the fold.

Step 3: Open the patty paper and draw a line on the crease. Label this line n.
Step 4: What is the relationship of line n to line m ? Describe how you could use your patty paper to justify this relationship.

Construct a perpendicular bisector of a given line segment using patty paper

Step 1: Draw a line segment on your patty paper. Label the line segment AB.
Step 2: Fold the patty paper so that points A and B, the two end points of the segment you drew on the patty paper, coincide with each other. Crease the paper along the fold.

Step 3: Open the patty paper and draw a line on the crease. Label this line k. Label the intersection of line k with line segment $A B$ as point M.

Constructions Using Patty Paper (Continued)

Construct a perpendicular bisector of a given line segment using patty paper continued
Step 4: What is the relationship of line k to $\overline{\mathrm{AB}}$?
Step 5: What is the relationship between $\overline{\mathrm{AM}}$ and $\overline{\mathrm{BM}}$?
Step 6: Point M is the \qquad of $\overline{\mathrm{AB}}$.

Step 7: Select a point on line k. Label this point X .
Step 8: What is the relationship between AX and BX? Describe how you could use your patty paper to justify this relationship.

Step 9: Select a different point on line k and repeat steps 7 and 8.
Step 10: Write a conjecture stating the relationship between any point on the perpendicular bisector of a line segment and the endpoints of that line segment.

Construct the bisector of an angle using patty paper

Step 1: Draw an angle on a sheet of patty paper. Label this angle $\angle \mathrm{QRS}$.

Step 2: Fold your patty paper so that the two sides of the angle, $\overrightarrow{\mathrm{RQ}}$ and $\overrightarrow{\mathrm{RS}}$, coincide. Crease the paper along the fold.

Step 3: Unfold your patty paper. Select a point on the interior of $\angle \mathrm{QRS}$ that lies on the crease. Label this point T. Draw ray RT.

Step 4: What is the relationship between $\angle \mathrm{QRT}$ and $\angle \mathrm{SRT}$? How can you use your patty paper to justify this relationship?

Step 5: What is the relationship between the distances from point T to each of the sides of the angle? Using your patty paper, explain how you determined this relationship.

Step 6: Select another point on ray RT. Label this point W. What is the relationship between the distances from point W to each of the sides of the angle?

Step 7: Write a conjecture comparing the distances from a point that lies on an angle bisector to each of the sides of the angle.

$$
\begin{aligned}
& \text { Answers: } \begin{array}{l}
\text { Definitions - right angles, congruent, congruent } \\
\text { Construct a line perpendicular to a given line } \\
\text { Step 4: Perpendicular. Perpendicular lines can be } \\
\text { demonstrated using patty paper by matching the } \\
\text { corner of the paper to demonstrate right angles. } \\
\text { Construct a line through a point perpendicular to a given line } \\
\text { Step 4: Perpendicular. Perpendicular lines can be } \\
\text { demonstrated using patty paper by matching the } \\
\text { corner of the paper to demonstrate right angles. } \\
\text { Construct a perpendicular bisector of a given line segment } \\
\text { Step 4: Perpendicular } \\
\text { Step 5: Congruent segments } \\
\text { Step 6: Midpoint } \\
\text { Step 8: Congruent segments. This can be shown using } \\
\text { patty paper by copying the length of one segment } \\
\text { and overlaying it over the second segment and } \\
\text { confirming congruence. } \\
\text { Step 10: Any point on the perpendicular bisector of a } \\
\text { segment is equidistant from the endpoint of the } \\
\text { segment. } \\
\text { Construct the bisector of an angle } \\
\text { Step 4: Congruent angles. This can be shown by } \\
\text { tracing one angle and then overlaying it over the } \\
\text { second angle to confirm congruence. } \\
\text { Step 5: Point T is equidistant to each side of the angle. } \\
\text { This can be shown using patty paper by placing } \\
\text { point T on one edge of the patty paper. Line up the } \\
\text { edge of the patty paper that is perpendicular to the } \\
\text { edge along T with one side of the angle. Mark point } \\
\text { T on the patty paper. Repeat the process with the } \\
\text { other side of the angle to confirm equal distance. } \\
\text { Step 6: Equidistant } \\
\text { Step 7: Every point on the bisector of an angle is } \\
\text { equidistant from both sides of the angle. }
\end{array}
\end{aligned}
$$

